Year 2025 / Volume 117 / Number 5
Original
LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma

256-264

DOI: 10.17235/reed.2024.10632/2024

Yanqing Gong, Huimin Wang, Xiaoming Wang, Deli Kuang, Chunmiao Yuan, Jianhua Ju,

Abstract
Background: long non-coding RNAs (lncRNAs) are a major research focus in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This article discusses how OIP5-AS1 could potentially be used to diagnose and prognosticate cholangiocarcinoma (CHOL). Methods: the ENROCI project evaluated OIP5-AS1 expression in CHOL samples, which was confirmed by RT-qPCR. A bioinformatics database predicted the target gene of OIP5-AS1 in CHOL, which was then confirmed by luciferase activity assays. The CCK-8 and Transwell methods were employed to detect the changes in CHOL cell growth and migration levels after OIP5-AS1 knockdown. ROC and Kaplan-Meier curves were used to examine the diagnostic and prognostic functions of OIP5-AS1. Results: in CHOL tissues and cells, OIP5-AS1 was enhanced compared to the controls. Reducing OIP5-AS1 hampered the regulatory capacity of CHOL cells, which was restored by the miR-28-5p inhibitor. Notably, OIP5-AS1 was observed to sponge and downregulate miR-28-5p, exhibiting high sensitivity and specificity (84.4 % and 81.3 %) in CHOL. G3BP1 was a direct target of miR-28-5p. Decreased OIP5-AS1 level was beneficial for survival (HR = 2.391, p = 0.024). Conclusion: OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of CHOL cells, which may be a potential marker for diagnosis and prognosis of CHOL patients.
Lay Summary
Long non-coding RNAs are a major research focus in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used to diagnose and prognosticate cholangiocarcinoma. In our study, OIP5-AS1 expression was upregulated in cholangiocarcinoma tissues and cells, and was related to shorter survival time. OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of cholangiocarcinoma cells, which may be a potential marker for diagnosis and prognosis of cholangiocarcinoma patients.
New comment
Comments
No comments for this article
References
1. Guo K, Lou Y, Zheng S. Predictors of Distant Metastasis and Prognosis in Newly Diagnosed T1 Intrahepatic Cholangiocarcinoma. BioMed research international. 2023;2023:6638755.
2. Wang K, Zhang Y, Yang X, Chen T, Han T. Analysis of differentially expressed mRNAs and the prognosis of cholangiocarcinoma based on TCGA database. Translational cancer research. 2020;9(8):4739-49.
3. Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, et al. Potential prognosis index for m(6)A-related mRNA in cholangiocarcinoma. BMC cancer. 2022;22(1):620.
4. Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell death & disease. 2018;9(2):249.
5. Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, et al. LncRNAs regulate metabolism in cancer. International journal of biological sciences. 2020;16(7):1194-206.
6. Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Molecular biology reports. 2022;49(12):11515-34.
7. Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS pathogens. 2019;15(1):e1007578.
8. Zhong J, Chen J, Wang B, Zhou Z, Shen Y, Gong Y, et al. OIP5-AS1: A Fascinating Long Noncoding RNA in Carcinoma. Current pharmaceutical design. 2021;27(46):4699-706.
9. Li Y, Han X, Feng H, Han J. Long noncoding RNA OIP5-AS1 in cancer. Clinica chimica acta; international journal of clinical chemistry. 2019;499:75-80.
10. Pronina IV, Filippova EA, Brovkina OI, Burdennyy AM, Kazubskaya TP, Kushlinskii DN, et al. Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bulletin of experimental biology and medicine. 2023;174(3):354-9.
11. Qin GH, Yang WC, Yao JN, Zhao Y, Wu XJ. LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. European review for medical and pharmacological sciences. 2021;25(3):1215-24.
12. Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecologic and obstetric investigation. 2021;86(6):509-17.
13. Yang J, Huang Q, Liao P, Zhang P, Sun S, Xu Q. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4. Transplant immunology. 2023;76:101681.
14. Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, et al. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. International journal of molecular sciences. 2022;23(13).
15. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer cell international. 2022;22(1):225.
16. You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, et al. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Molecular cancer therapeutics. 2019;18(12):2469-79.
17. Pausawasdi N, Termsinsuk P, Charatcharoenwitthaya P, Limsrivilai J, Kaosombatwattana U. Development and validation of a risk score for predicting clinical success after endobiliary stenting for malignant biliary obstruction. PloS one. 2022;17(8):e0272918.
18. Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, et al. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Frontiers in cardiovascular medicine. 2021;8:647953.
19. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Frontiers in immunology. 2022;13:930171.
20. Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. The Journal of surgical research. 2021;257:501-10.
21. Guo L, Chen J, Liu D, Liu L. OIP5-AS1/miR-137/ZNF217 Axis Promotes Malignant Behaviors in Epithelial Ovarian Cancer. Cancer management and research. 2020;12:6707-17.
22. Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, et al. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;125:109916.
23. Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H, et al. LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;130:110566.
24. Liu Y, Guo C, Li F, Wu L. LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression. Cell biochemistry and function. 2020;38(1):58-65.
25. Wu L, Zhu X, Wang R, Sun S, Ma B, Zhang Z. The AKT/mTOR Signaling Pathway Was Mediated through the LINC00514/miR-28-5p/TRIM44 Axis. Disease markers. 2022;2022:1889467.
26. Chen T, Wang H, Yan H. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients. Cell cycle (Georgetown, Tex). 2022;21(19):2079-90.
27. Xu R, Guo Q, Zhao P, Lu H, Zhang B. miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. Evidence-based complementary and alternative medicine : eCAM. 2022;2022:6946051.
28. Ma L, Zhang Y, Hu F. miR‑28‑5p inhibits the migration of breast cancer by regulating WSB2. International journal of molecular medicine. 2020;46(4):1562-70.
29. Zhang L, Wang X, Liu X, Lv M, Shen E, Zhu G, et al. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta biochimica et biophysica Sinica. 2020;52(8):842-52.
30. Zhao W, Zhao J, Guo X, Feng Y, Zhang B, Tian L. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis. BMC cancer. 2021;21(1):142.
31. Wu T, Lei MS, Gao XZ, Xiong TG, Yang K, Gong Q, et al. lncRNA SNHG16 Mediates Cell Proliferation and Apoptosis in Cholangiocarcinoma by Directly Targeting miR-146a-5p/GATA6 Axis. Biochemical genetics. 2021;59(5):1311-25.
32. Guan C, Zhao Y, Wang W, Hu Z, Liu L, Li W, et al. Knockdown of lncRNA SNHG20 Suppressed the Proliferation of Cholangiocarcinoma by Sponging miR-520f-3p. Cancer biotherapy & radiopharmaceuticals. 2020.
33. Wu L, Yang J, Ke RS, Liu Y, Guo P, Feng L, et al. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clinics and research in hepatology and gastroenterology. 2022;46(9):101999.
1. Guo K, Lou Y, Zheng S. Predictors of Distant Metastasis and Prognosis in Newly Diagnosed T1 Intrahepatic Cholangiocarcinoma. BioMed research international. 2023;2023:6638755.
2. Wang K, Zhang Y, Yang X, Chen T, Han T. Analysis of differentially expressed mRNAs and the prognosis of cholangiocarcinoma based on TCGA database. Translational cancer research. 2020;9(8):4739-49.
3. Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, et al. Potential prognosis index for m(6)A-related mRNA in cholangiocarcinoma. BMC cancer. 2022;22(1):620.
4. Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell death & disease. 2018;9(2):249.
5. Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, et al. LncRNAs regulate metabolism in cancer. International journal of biological sciences. 2020;16(7):1194-206.
6. Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Molecular biology reports. 2022;49(12):11515-34.
7. Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS pathogens. 2019;15(1):e1007578.
8. Zhong J, Chen J, Wang B, Zhou Z, Shen Y, Gong Y, et al. OIP5-AS1: A Fascinating Long Noncoding RNA in Carcinoma. Current pharmaceutical design. 2021;27(46):4699-706.
9. Li Y, Han X, Feng H, Han J. Long noncoding RNA OIP5-AS1 in cancer. Clinica chimica acta; international journal of clinical chemistry. 2019;499:75-80.
10. Pronina IV, Filippova EA, Brovkina OI, Burdennyy AM, Kazubskaya TP, Kushlinskii DN, et al. Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bulletin of experimental biology and medicine. 2023;174(3):354-9.
11. Qin GH, Yang WC, Yao JN, Zhao Y, Wu XJ. LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. European review for medical and pharmacological sciences. 2021;25(3):1215-24.
12. Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecologic and obstetric investigation. 2021;86(6):509-17.
13. Yang J, Huang Q, Liao P, Zhang P, Sun S, Xu Q. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4. Transplant immunology. 2023;76:101681.
14. Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, et al. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. International journal of molecular sciences. 2022;23(13).
15. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer cell international. 2022;22(1):225.
16. You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, et al. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Molecular cancer therapeutics. 2019;18(12):2469-79.
17. Pausawasdi N, Termsinsuk P, Charatcharoenwitthaya P, Limsrivilai J, Kaosombatwattana U. Development and validation of a risk score for predicting clinical success after endobiliary stenting for malignant biliary obstruction. PloS one. 2022;17(8):e0272918.
18. Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, et al. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Frontiers in cardiovascular medicine. 2021;8:647953.
19. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Frontiers in immunology. 2022;13:930171.
20. Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. The Journal of surgical research. 2021;257:501-10.
21. Guo L, Chen J, Liu D, Liu L. OIP5-AS1/miR-137/ZNF217 Axis Promotes Malignant Behaviors in Epithelial Ovarian Cancer. Cancer management and research. 2020;12:6707-17.
22. Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, et al. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;125:109916.
23. Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H, et al. LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;130:110566.
24. Liu Y, Guo C, Li F, Wu L. LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression. Cell biochemistry and function. 2020;38(1):58-65.
25. Wu L, Zhu X, Wang R, Sun S, Ma B, Zhang Z. The AKT/mTOR Signaling Pathway Was Mediated through the LINC00514/miR-28-5p/TRIM44 Axis. Disease markers. 2022;2022:1889467.
26. Chen T, Wang H, Yan H. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients. Cell cycle (Georgetown, Tex). 2022;21(19):2079-90.
27. Xu R, Guo Q, Zhao P, Lu H, Zhang B. miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. Evidence-based complementary and alternative medicine : eCAM. 2022;2022:6946051.
28. Ma L, Zhang Y, Hu F. miR‑28‑5p inhibits the migration of breast cancer by regulating WSB2. International journal of molecular medicine. 2020;46(4):1562-70.
29. Zhang L, Wang X, Liu X, Lv M, Shen E, Zhu G, et al. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta biochimica et biophysica Sinica. 2020;52(8):842-52.
30. Jiang W, Wang J, Yang X, Shan J, Zhang Y, Shi X, et al. KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene. 2023;42(17):1392-404.
31. Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, et al. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics. 2021;11(4):1732-52.
32. Wu T, Lei MS, Gao XZ, Xiong TG, Yang K, Gong Q, et al. lncRNA SNHG16 Mediates Cell Proliferation and Apoptosis in Cholangiocarcinoma by Directly Targeting miR-146a-5p/GATA6 Axis. Biochemical genetics. 2021;59(5):1311-25.
33. Guan C, Zhao Y, Wang W, Hu Z, Liu L, Li W, et al. Knockdown of lncRNA SNHG20 Suppressed the Proliferation of Cholangiocarcinoma by Sponging miR-520f-3p. Cancer biotherapy & radiopharmaceuticals. 2020.
34. Wu L, Yang J, Ke RS, Liu Y, Guo P, Feng L, et al. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clinics and research in hepatology and gastroenterology. 2022;46(9):101999.
Related articles

Editorial

Diagnosing hilar cholangiocarcinoma: ERCP with cholangioscopy

DOI: 10.17235/reed.2025.11051/2024

Letter

Deceiving duodenal erosion: a fishbone lies beneath

DOI: 10.17235/reed.2024.10872/2024

Letter

Calcifying fibrous tumor and pathological analysis

DOI: 10.17235/reed.2023.9739/2023

Letter

Endoscopic observation of a rare duodenal tumor

DOI: 10.17235/reed.2023.9679/2023

Editorial

Recent advances in the diagnosis and management of Wilson’s disease

DOI: 10.17235/reed.2023.9633/2023

Letter

Vaginal lesion as first manifestation of colorectal disease

DOI: 10.17235/reed.2022.9270/2022

Digestive Diseases Image

An unusual cause of a protuberant lesion of the gastric antrum

DOI: 10.17235/reed.2022.8771/2022

Letter

Sigmoid colon Schwannoma simulating colon cancer

DOI: 10.17235/reed.2022.8684/2022

Digestive Diseases Image

Malignancy of intraductal papillary neoplasm of the bile duct

DOI: 10.17235/reed.2021.8193/2021

Digestive Diseases Image

Abdominal cocoon sign: an unusual cause of intestinal obstruction

DOI: 10.17235/reed.2021.8057/2021

Letter

POEMS syndrome: an uncommon cause of peritoneal effusion

DOI: 10.17235/reed.2021.8027/2021

Digestive Diseases Image

Phlebosclerotic colitis: an unusual cause of abdominal pain and hematochezia

DOI: 10.17235/reed.2020.7358/2020

Original

Can we optimize CEA as a response marker in rectal cancer?

DOI: 10.17235/reed.2020.7321/2020

Review

New non-invasive biomarkers for colorectal cancer screening

DOI: 10.17235/reed.2020.7233/2020

Editorial

Reflex testing. A key tool for the elimination of hepatitis C

DOI: 10.17235/reed.2020.7201/2020

Letter

Chilaiditi’s and Ogilvie syndromes

DOI: 10.17235/reed.2020.7036/2020

Letter

Hepatocarcinoma diagnosis. Reflection is required

DOI: 10.17235/reed.2020.6845/2019

Editorial

The right colon challenge

DOI: 10.17235/reed.2018.5544/2018

Letter to the Editor

Neuroendocrine tumors of the pancreas: keys issues in dealing with heterogeneity

DOI: 10.17235/reed.2017.4997/2017

Letter to the Editor

Pancreatic neuroendocrine tumors. Prognostic factors

DOI: 10.17235/reed.2017.5109/2017

Letter to the Editor

Sternal cutaneous metastasis of hilar cholangiocarcinoma

DOI: 10.17235/reed.2017.4979/2017

Editorial

Pancreas neuroendocrine tumors - not so rare or benign

DOI: 10.17235/reed.2016.4672/2016

Letter to the Editor

About human taeniasis and Taenia saginata diagnosis by endoscopy

DOI: 10.17235/reed.2016.4297/2016

Letter to the Editor

Lupus as a paraneoplastic manifestation of cholangiocarcinoma

DOI: 10.17235/reed.2016.4064/2015

Citation tools
Gong Y, Wang H, Wang X, Kuang D, Yuan C, Ju J, et all. LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma. 10632/2024


Download to a citation manager

Download the citation for this article by clicking on one of the following citation managers:

Metrics
This article has received 38 visits.
This article has been downloaded 0 times.

Statistics from Dimensions


Statistics from Plum Analytics

Publication history

Received: 04/07/2024

Accepted: 12/12/2024

Online First: 09/01/2025

Published: 08/05/2025

Article Online First time: 189 days

Article editing time: 308 days


Share
This article hasn't been rated yet.
Reader rating:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
The Spanish Journal of Gastroenterology is the official organ of the Sociedad Española de Patología Digestiva, the Sociedad Española de Endoscopia Digestiva and the Asociación Española de Ecografía Digestiva
Cookie policy Privacy Policy Legal Notice © Copyright 2025 y Creative Commons. The Spanish Journal of Gastroenterology