Año 2025 / Volumen 117 / Número 5
Original
LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma

256-264

DOI: 10.17235/reed.2024.10632/2024

Yanqing Gong, Huimin Wang, Xiaoming Wang, Deli Kuang, Chunmiao Yuan, Jianhua Ju,

Resumen
Background: long non-coding RNAs (lncRNAs) are a major research focus in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This article discusses how OIP5-AS1 could potentially be used to diagnose and prognosticate cholangiocarcinoma (CHOL). Methods: the ENROCI project evaluated OIP5-AS1 expression in CHOL samples, which was confirmed by RT-qPCR. A bioinformatics database predicted the target gene of OIP5-AS1 in CHOL, which was then confirmed by luciferase activity assays. The CCK-8 and Transwell methods were employed to detect the changes in CHOL cell growth and migration levels after OIP5-AS1 knockdown. ROC and Kaplan-Meier curves were used to examine the diagnostic and prognostic functions of OIP5-AS1. Results: in CHOL tissues and cells, OIP5-AS1 was enhanced compared to the controls. Reducing OIP5-AS1 hampered the regulatory capacity of CHOL cells, which was restored by the miR-28-5p inhibitor. Notably, OIP5-AS1 was observed to sponge and downregulate miR-28-5p, exhibiting high sensitivity and specificity (84.4 % and 81.3 %) in CHOL. G3BP1 was a direct target of miR-28-5p. Decreased OIP5-AS1 level was beneficial for survival (HR = 2.391, p = 0.024). Conclusion: OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of CHOL cells, which may be a potential marker for diagnosis and prognosis of CHOL patients.
Resumen coloquial
Long non-coding RNAs are a major research focus in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used to diagnose and prognosticate cholangiocarcinoma. In our study, OIP5-AS1 expression was upregulated in cholangiocarcinoma tissues and cells, and was related to shorter survival time. OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of cholangiocarcinoma cells, which may be a potential marker for diagnosis and prognosis of cholangiocarcinoma patients.
Nuevo comentario
Comentarios
No hay comentarios para este artículo.
Bibliografía
1. Guo K, Lou Y, Zheng S. Predictors of Distant Metastasis and Prognosis in Newly Diagnosed T1 Intrahepatic Cholangiocarcinoma. BioMed research international. 2023;2023:6638755.
2. Wang K, Zhang Y, Yang X, Chen T, Han T. Analysis of differentially expressed mRNAs and the prognosis of cholangiocarcinoma based on TCGA database. Translational cancer research. 2020;9(8):4739-49.
3. Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, et al. Potential prognosis index for m(6)A-related mRNA in cholangiocarcinoma. BMC cancer. 2022;22(1):620.
4. Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell death & disease. 2018;9(2):249.
5. Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, et al. LncRNAs regulate metabolism in cancer. International journal of biological sciences. 2020;16(7):1194-206.
6. Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Molecular biology reports. 2022;49(12):11515-34.
7. Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS pathogens. 2019;15(1):e1007578.
8. Zhong J, Chen J, Wang B, Zhou Z, Shen Y, Gong Y, et al. OIP5-AS1: A Fascinating Long Noncoding RNA in Carcinoma. Current pharmaceutical design. 2021;27(46):4699-706.
9. Li Y, Han X, Feng H, Han J. Long noncoding RNA OIP5-AS1 in cancer. Clinica chimica acta; international journal of clinical chemistry. 2019;499:75-80.
10. Pronina IV, Filippova EA, Brovkina OI, Burdennyy AM, Kazubskaya TP, Kushlinskii DN, et al. Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bulletin of experimental biology and medicine. 2023;174(3):354-9.
11. Qin GH, Yang WC, Yao JN, Zhao Y, Wu XJ. LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. European review for medical and pharmacological sciences. 2021;25(3):1215-24.
12. Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecologic and obstetric investigation. 2021;86(6):509-17.
13. Yang J, Huang Q, Liao P, Zhang P, Sun S, Xu Q. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4. Transplant immunology. 2023;76:101681.
14. Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, et al. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. International journal of molecular sciences. 2022;23(13).
15. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer cell international. 2022;22(1):225.
16. You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, et al. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Molecular cancer therapeutics. 2019;18(12):2469-79.
17. Pausawasdi N, Termsinsuk P, Charatcharoenwitthaya P, Limsrivilai J, Kaosombatwattana U. Development and validation of a risk score for predicting clinical success after endobiliary stenting for malignant biliary obstruction. PloS one. 2022;17(8):e0272918.
18. Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, et al. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Frontiers in cardiovascular medicine. 2021;8:647953.
19. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Frontiers in immunology. 2022;13:930171.
20. Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. The Journal of surgical research. 2021;257:501-10.
21. Guo L, Chen J, Liu D, Liu L. OIP5-AS1/miR-137/ZNF217 Axis Promotes Malignant Behaviors in Epithelial Ovarian Cancer. Cancer management and research. 2020;12:6707-17.
22. Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, et al. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;125:109916.
23. Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H, et al. LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;130:110566.
24. Liu Y, Guo C, Li F, Wu L. LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression. Cell biochemistry and function. 2020;38(1):58-65.
25. Wu L, Zhu X, Wang R, Sun S, Ma B, Zhang Z. The AKT/mTOR Signaling Pathway Was Mediated through the LINC00514/miR-28-5p/TRIM44 Axis. Disease markers. 2022;2022:1889467.
26. Chen T, Wang H, Yan H. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients. Cell cycle (Georgetown, Tex). 2022;21(19):2079-90.
27. Xu R, Guo Q, Zhao P, Lu H, Zhang B. miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. Evidence-based complementary and alternative medicine : eCAM. 2022;2022:6946051.
28. Ma L, Zhang Y, Hu F. miR‑28‑5p inhibits the migration of breast cancer by regulating WSB2. International journal of molecular medicine. 2020;46(4):1562-70.
29. Zhang L, Wang X, Liu X, Lv M, Shen E, Zhu G, et al. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta biochimica et biophysica Sinica. 2020;52(8):842-52.
30. Zhao W, Zhao J, Guo X, Feng Y, Zhang B, Tian L. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis. BMC cancer. 2021;21(1):142.
31. Wu T, Lei MS, Gao XZ, Xiong TG, Yang K, Gong Q, et al. lncRNA SNHG16 Mediates Cell Proliferation and Apoptosis in Cholangiocarcinoma by Directly Targeting miR-146a-5p/GATA6 Axis. Biochemical genetics. 2021;59(5):1311-25.
32. Guan C, Zhao Y, Wang W, Hu Z, Liu L, Li W, et al. Knockdown of lncRNA SNHG20 Suppressed the Proliferation of Cholangiocarcinoma by Sponging miR-520f-3p. Cancer biotherapy & radiopharmaceuticals. 2020.
33. Wu L, Yang J, Ke RS, Liu Y, Guo P, Feng L, et al. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clinics and research in hepatology and gastroenterology. 2022;46(9):101999.
1. Guo K, Lou Y, Zheng S. Predictors of Distant Metastasis and Prognosis in Newly Diagnosed T1 Intrahepatic Cholangiocarcinoma. BioMed research international. 2023;2023:6638755.
2. Wang K, Zhang Y, Yang X, Chen T, Han T. Analysis of differentially expressed mRNAs and the prognosis of cholangiocarcinoma based on TCGA database. Translational cancer research. 2020;9(8):4739-49.
3. Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, et al. Potential prognosis index for m(6)A-related mRNA in cholangiocarcinoma. BMC cancer. 2022;22(1):620.
4. Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell death & disease. 2018;9(2):249.
5. Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, et al. LncRNAs regulate metabolism in cancer. International journal of biological sciences. 2020;16(7):1194-206.
6. Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Molecular biology reports. 2022;49(12):11515-34.
7. Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS pathogens. 2019;15(1):e1007578.
8. Zhong J, Chen J, Wang B, Zhou Z, Shen Y, Gong Y, et al. OIP5-AS1: A Fascinating Long Noncoding RNA in Carcinoma. Current pharmaceutical design. 2021;27(46):4699-706.
9. Li Y, Han X, Feng H, Han J. Long noncoding RNA OIP5-AS1 in cancer. Clinica chimica acta; international journal of clinical chemistry. 2019;499:75-80.
10. Pronina IV, Filippova EA, Brovkina OI, Burdennyy AM, Kazubskaya TP, Kushlinskii DN, et al. Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bulletin of experimental biology and medicine. 2023;174(3):354-9.
11. Qin GH, Yang WC, Yao JN, Zhao Y, Wu XJ. LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. European review for medical and pharmacological sciences. 2021;25(3):1215-24.
12. Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecologic and obstetric investigation. 2021;86(6):509-17.
13. Yang J, Huang Q, Liao P, Zhang P, Sun S, Xu Q. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4. Transplant immunology. 2023;76:101681.
14. Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, et al. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. International journal of molecular sciences. 2022;23(13).
15. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer cell international. 2022;22(1):225.
16. You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, et al. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Molecular cancer therapeutics. 2019;18(12):2469-79.
17. Pausawasdi N, Termsinsuk P, Charatcharoenwitthaya P, Limsrivilai J, Kaosombatwattana U. Development and validation of a risk score for predicting clinical success after endobiliary stenting for malignant biliary obstruction. PloS one. 2022;17(8):e0272918.
18. Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, et al. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Frontiers in cardiovascular medicine. 2021;8:647953.
19. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Frontiers in immunology. 2022;13:930171.
20. Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. The Journal of surgical research. 2021;257:501-10.
21. Guo L, Chen J, Liu D, Liu L. OIP5-AS1/miR-137/ZNF217 Axis Promotes Malignant Behaviors in Epithelial Ovarian Cancer. Cancer management and research. 2020;12:6707-17.
22. Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, et al. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;125:109916.
23. Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H, et al. LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020;130:110566.
24. Liu Y, Guo C, Li F, Wu L. LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression. Cell biochemistry and function. 2020;38(1):58-65.
25. Wu L, Zhu X, Wang R, Sun S, Ma B, Zhang Z. The AKT/mTOR Signaling Pathway Was Mediated through the LINC00514/miR-28-5p/TRIM44 Axis. Disease markers. 2022;2022:1889467.
26. Chen T, Wang H, Yan H. miR-28-5p inhibits cholangiocarcinoma progression and predicts good prognosis of patients. Cell cycle (Georgetown, Tex). 2022;21(19):2079-90.
27. Xu R, Guo Q, Zhao P, Lu H, Zhang B. miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. Evidence-based complementary and alternative medicine : eCAM. 2022;2022:6946051.
28. Ma L, Zhang Y, Hu F. miR‑28‑5p inhibits the migration of breast cancer by regulating WSB2. International journal of molecular medicine. 2020;46(4):1562-70.
29. Zhang L, Wang X, Liu X, Lv M, Shen E, Zhu G, et al. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta biochimica et biophysica Sinica. 2020;52(8):842-52.
30. Jiang W, Wang J, Yang X, Shan J, Zhang Y, Shi X, et al. KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene. 2023;42(17):1392-404.
31. Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, et al. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics. 2021;11(4):1732-52.
32. Wu T, Lei MS, Gao XZ, Xiong TG, Yang K, Gong Q, et al. lncRNA SNHG16 Mediates Cell Proliferation and Apoptosis in Cholangiocarcinoma by Directly Targeting miR-146a-5p/GATA6 Axis. Biochemical genetics. 2021;59(5):1311-25.
33. Guan C, Zhao Y, Wang W, Hu Z, Liu L, Li W, et al. Knockdown of lncRNA SNHG20 Suppressed the Proliferation of Cholangiocarcinoma by Sponging miR-520f-3p. Cancer biotherapy & radiopharmaceuticals. 2020.
34. Wu L, Yang J, Ke RS, Liu Y, Guo P, Feng L, et al. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clinics and research in hepatology and gastroenterology. 2022;46(9):101999.
Artículos relacionados

Carta

Deceiving duodenal erosion: a fishbone lies beneath

DOI: 10.17235/reed.2024.10872/2024

Carta

Calcifying fibrous tumor and pathological analysis

DOI: 10.17235/reed.2023.9739/2023

Carta

Endoscopic observation of a rare duodenal tumor

DOI: 10.17235/reed.2023.9679/2023

Editorial

Recent advances in the diagnosis and management of Wilson’s disease

DOI: 10.17235/reed.2023.9633/2023

Carta

Vaginal lesion as first manifestation of colorectal disease

DOI: 10.17235/reed.2022.9270/2022

Imagen en Patología Digestiva

An unusual cause of a protuberant lesion of the gastric antrum

DOI: 10.17235/reed.2022.8771/2022

Carta

Schwannoma en colon sigmoide que simula cáncer de colon

DOI: 10.17235/reed.2022.8684/2022

Imagen en Patología Digestiva

Malignización de neoplasia papilar intraductal de la vía biliar

DOI: 10.17235/reed.2021.8193/2021

Imagen en Patología Digestiva

Abdominal cocoon sign: an unusual cause of intestinal obstruction

DOI: 10.17235/reed.2021.8057/2021

Carta

POEMS syndrome: an uncommon cause of peritoneal effusion

DOI: 10.17235/reed.2021.8027/2021

Imagen en Patología Digestiva

Phlebosclerotic colitis: an unusual cause of abdominal pain and hematochezia

DOI: 10.17235/reed.2020.7358/2020

Original

Can we optimize CEA as a response marker in rectal cancer?

DOI: 10.17235/reed.2020.7321/2020

Editorial

Reflex testing. A key tool for the elimination of hepatitis C

DOI: 10.17235/reed.2020.7201/2020

Carta

Chilaiditi’s and Ogilvie syndromes

DOI: 10.17235/reed.2020.7036/2020

Carta

Diagnóstico de hepatocarcinoma. Una reflexión necesaria

DOI: 10.17235/reed.2020.6845/2019

Revisión

Meckel’s diverticulum: clinical features, diagnosis and management

DOI: 10.17235/reed.2018.5628/2018

Editorial

El reto del colon derecho

DOI: 10.17235/reed.2018.5544/2018

Carta al Editor

Tumores neuroendocrinos de páncreas: claves para afrontar la heterogeneidad

DOI: 10.17235/reed.2017.4997/2017

Carta al Editor

Tumores neuroendocrinos de páncreas: factores pronósticos

DOI: 10.17235/reed.2017.5109/2017

Carta al Editor

Metástasis cutánea esternal de colangiocarcinoma hiliar

DOI: 10.17235/reed.2017.4979/2017

Editorial

Tumores neuroendocrinos del páncreas: no tan raros y no tan benignos

DOI: 10.17235/reed.2016.4672/2016

Carta al Editor

About human taeniasis and Taenia saginata diagnosis by endoscopy

DOI: 10.17235/reed.2016.4297/2016

Carta al Editor

Lupus como manifestación paraneoplásica de colangiocarcinoma

DOI: 10.17235/reed.2016.4064/2015

Instrucciones para citar
Gong Y, Wang H, Wang X, Kuang D, Yuan C, Ju J, et all. LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma. 10632/2024


Descargar en un gestor de citas

Descargue la cita de este artículo haciendo clic en uno de los siguientes gestores de citas:

Métrica
Este artículo ha sido visitado 1071 veces.
Este artículo ha sido descargado 28 veces.

Estadísticas de Dimensions


Estadísticas de Plum Analytics

Ficha Técnica

Recibido: 04/07/2024

Aceptado: 12/12/2024

Prepublicado: 09/01/2025

Publicado: 08/05/2025

Tiempo de prepublicación: 189 días

Tiempo de edición del artículo: 308 días


Compartir
Este artículo aun no tiene valoraciones.
Valoración del lector:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
La REED es el órgano oficial de la Sociedad Española de Patología Digestiva, la SociedadEspañola de Endoscopia Digestiva y la Asociación Española de Ecografía Digestiva
Política de cookies Política de Privacidad Aviso Legal © Copyright 2025 y Creative Commons. Revista Española de Enfermedades Digestivas