References
                                            
                                                    
                                                        Amisha, Malik, P., Pathania, M., & Rathaur, V. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7). https://doi.org/10.4103/jfmpc.jfmpc_440_19
                                                    
                                                    
                                                
                                                    
                                                        Ang, T. L., Kwek, A. B. E., & Wang, L. M. (2018). Diagnostic Endoscopic Ultrasound: Technique, Current Status and Future Directions. Gut and Liver, 12(5), 483–496. https://doi.org/10.5009/gnl17348
                                                    
                                                    
                                                
                                                    
                                                        Angsuwatcharakon, P., Kulpatcharapong, S., Moon, J. H., Ramchandani, M., Lau, J., Isayama, H., Seo, D. W., Maydeo, A., Wang, H. P., Nakai, Y., Ratanachu-ek, T., Bapaye, A., Hu, B., Devereaux, B., Ponnudurai, R., Khor, C., Kongkam, P., Pausawasdi, N., Ridtitid, W., … Rerknimitr, R. (2022). Consensus guidelines on the role of cholangioscopy to diagnose indeterminate biliary stricture. HPB, 24(1). https://doi.org/10.1016/j.hpb.2021.05.005
                                                    
                                                    
                                                
                                                    
                                                        Aoki, T., Yamada, A., Kato, Y., Saito, H., Tsuboi, A., Nakada, A., Niikura, R., Fujishiro, M., Oka, S., Ishihara, S., Matsuda, T., Nakahori, M., Tanaka, S., Koike, K., & Tada, T. (2021). Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointestinal Endoscopy, 93(1), 165-173.e1. https://doi.org/10.1016/j.gie.2020.04.080
                                                    
                                                    
                                                
                                                    
                                                        Archibugi, L., Ciarfaglia, G., Cárdenas-Jaén, K., Poropat, G., Korpela, T., Maisonneuve, P., Aparicio, J. R., Casellas, J. A., Arcidiacono, P. G., Mariani, A., Stimac, D., Hauser, G., Udd, M., Kylänpää, L., Rainio, M., Di Giulio, E., Vanella, G., Lohr, J. M., Valente, R., … de-Madaria, E. (2023). Machine learning for the prediction of post-ERCP pancreatitis risk: A proof-of-concept study. Digestive and Liver Disease, 55(3). https://doi.org/10.1016/j.dld.2022.10.005
                                                    
                                                    
                                                
                                                    
                                                        Barkun, A. N., von Renteln, D., & Sadri, H. (2023). Cost-effectiveness of Artificial Intelligence-Aided Colonoscopy for Adenoma Detection in Colon Cancer Screening. Journal of the Canadian Association of Gastroenterology, 6(3), 97–105. https://doi.org/10.1093/jcag/gwad014
                                                    
                                                    
                                                
                                                    
                                                        Bowlus, C. L., Olson, K. A., & Eric Gershwin, M. (2016). Evaluation of indeterminate biliary strictures. In Nature Reviews Gastroenterology and Hepatology (Vol. 13, Issue 1). https://doi.org/10.1038/nrgastro.2015.182
                                                    
                                                    
                                                
                                                    
                                                        de Oliveira, P. V. A. G., de Moura, D. T. H., Ribeiro, I. B., Bazarbashi, A. N., Franzini, T. A. P., dos Santos, M. E. L., Bernardo, W. M., & de Moura, E. G. H. (2020). Efficacy of digital single-operator cholangioscopy in the visual interpretation of indeterminate biliary strictures: a systematic review and meta-analysis. In Surgical Endoscopy (Vol. 34, Issue 8). https://doi.org/10.1007/s00464-020-07583-8
                                                    
                                                    
                                                
                                                    
                                                        Deprez, P. H., Garces Duran, R., Moreels, T., Furneri, G., Demma, F., Verbeke, L., Van Der Merwe, S. W., & Laleman, W. (2018). The economic impact of using single-operator cholangioscopy for the treatment of difficult bile duct stones and diagnosis of indeterminate bile duct strictures. Endoscopy, 50(2). https://doi.org/10.1055/s-0043-121268
                                                    
                                                    
                                                
                                                    
                                                        Dhali, A., Kipkorir, V., Srichawla, B. S., Kumar, H., Rathna, R. B., Ongidi, I., Chaudhry, T., Morara, G., Nurani, K., Cheruto, D., Biswas, J., Chieng, L. R., & Dhali, G. K. (2023). Artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion: a systematic review and meta-analysis. International Journal of Surgery, 109(12), 4298–4308. https://doi.org/10.1097/JS9.0000000000000717
                                                    
                                                    
                                                
                                                    
                                                        Ding, Z., Shi, H., Zhang, H., Meng, L., Fan, M., Han, C., Zhang, K., Ming, F., Xie, X., Liu, H., Liu, J., Lin, R., & Hou, X. (2019). Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology, 157(4), 1044-1054.e5. https://doi.org/10.1053/j.gastro.2019.06.025
                                                    
                                                    
                                                
                                                    
                                                        Dumitrescu, E. A., Ungureanu, B. S., Cazacu, I. M., Florescu, L. M., Streba, L., Croitoru, V. M., Sur, D., Croitoru, A., Turcu-Stiolica, A., & Lungulescu, C. V. (2022). Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel, Switzerland), 12(2). https://doi.org/10.3390/diagnostics12020309
                                                    
                                                    
                                                
                                                    
                                                        European Study Group on Cystic Tumours of the Pancreas. (2018). European evidence-based guidelines on pancreatic cystic neoplasms. Gut, 67(5), 789–804. https://doi.org/10.1136/gutjnl-2018-316027
                                                    
                                                    
                                                
                                                    
                                                        Facciorusso, A., Barresi, L., Cannizzaro, R., Antonini, F., Triantafyllou, K., Tziatzios, G., Muscatiello, N., Hart, P. A., & Wani, S. (2021). Diagnostic yield of endoscopic ultrasound-guided tissue acquisition in autoimmune pancreatitis: a systematic review and meta-analysis. Endoscopy International Open, 9(1), E66–E75. https://doi.org/10.1055/a-1293-7279
                                                    
                                                    
                                                
                                                    
                                                        Fugazza, A., Gabbiadini, R., Tringali, A., De Angelis, C. G., Mosca, P., Maurano, A., Di Mitri, R., Manno, M., Mariani, A., Cereatti, F., Bertani, H., Sferrazza, S., Donato, G., Tarantino, I., Cugia, L., Aragona, G., Cantù, P., Mazzocchi, A., Canfora, M. L., … Anderloni, A. (2022). Digital single-operator cholangioscopy in diagnostic and therapeutic bilio-pancreatic diseases: A prospective, multicenter study. Digestive and Liver Disease, 54(9). https://doi.org/10.1016/j.dld.2022.04.019
                                                    
                                                    
                                                
                                                    
                                                        Goyal, H., Mann, R., Gandhi, Z., Perisetti, A., Zhang, Z., Sharma, N., Saligram, S., Inamdar, S., & Tharian, B. (2021). Application of artificial intelligence in pancreaticobiliary diseases. Therapeutic Advances in Gastrointestinal Endoscopy, 14, 263177452199305. https://doi.org/10.1177/2631774521993059
                                                    
                                                    
                                                
                                                    
                                                        Hijioka, S., Yamao, K., Mizuno, N., Imaoka, H., Bhatia, V., & Hara, K. (2017). Early Diagnosis of Pancreatic Cancer Using Endoscopic Ultrasound. In Innovation of Diagnosis and Treatment for Pancreatic Cancer (pp. 3–11). Springer Singapore. https://doi.org/10.1007/978-981-10-2486-3_1
                                                    
                                                    
                                                
                                                    
                                                        Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. In Nature Reviews Cancer (Vol. 18, Issue 8). https://doi.org/10.1038/s41568-018-0016-5
                                                    
                                                    
                                                
                                                    
                                                        Huang, L., Xu, Y., Chen, J., Liu, F., Wu, D., Zhou, W., Wu, L., Pang, T., Huang, X., Zhang, K., & Yu, H. (2023). An artificial intelligence difficulty scoring system for stone removal during ERCP: a prospective validation. Endoscopy, 55(1). https://doi.org/10.1055/a-1850-6717
                                                    
                                                    
                                                
                                                    
                                                        Ishikawa, T., Hayakawa, M., Suzuki, H., Ohno, E., Mizutani, Y., Iida, T., Fujishiro, M., Kawashima, H., & Hotta, K. (2022). Development of a Novel Evaluation Method for Endoscopic Ultrasound-Guided Fine-Needle Biopsy in Pancreatic Diseases Using Artificial Intelligence. Diagnostics (Basel, Switzerland), 12(2). https://doi.org/10.3390/diagnostics12020434
                                                    
                                                    
                                                
                                                    
                                                        Kahaleh, M., Gaidhane, M., Shahid, H. M., Tyberg, A., Sarkar, A., Ardengh, J. C., Kedia, P., Andalib, I., Gress, F., Sethi, A., Gan, S. I., Suresh, S., Makar, M., Bareket, R., Slivka, A., Widmer, J. L., Jamidar, P. A., Alkhiari, R., Oleas, R., … Raijman, I. (2022). Digital single-operator cholangioscopy interobserver study using a new classification: the Mendoza Classification (with video). Gastrointestinal Endoscopy, 95(2). https://doi.org/10.1016/j.gie.2021.08.015
                                                    
                                                    
                                                
                                                    
                                                        Kim, T., Kim, J., Choi, H. S., Kim, E. S., Keum, B., Jeen, Y. T., Lee, H. S., Chun, H. J., Han, S. Y., Kim, D. U., Kwon, S., Choo, J., & Lee, J. M. (2021). Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87737-3
                                                    
                                                    
                                                
                                                    
                                                        Krishna, S. G., Rao, B. B., Ugbarugba, E., Shah, Z. K., Blaszczak, A., Hinton, A., Conwell, D. L., & Hart, P. A. (2017). Diagnostic performance of endoscopic ultrasound for detection of pancreatic malignancy following an indeterminate multidetector CT scan: a systemic review and meta-analysis. Surgical Endoscopy, 31(11), 4558–4567. https://doi.org/10.1007/s00464-017-5516-y
                                                    
                                                    
                                                
                                                    
                                                        Kruse, C. S., Frederick, B., Jacobson, T., & Monticone, D. K. (2017). Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care, 25(1), 1–10. https://doi.org/10.3233/THC-161263
                                                    
                                                    
                                                
                                                    
                                                        Kurita, Y., Kuwahara, T., Hara, K., Mizuno, N., Okuno, N., Matsumoto, S., Obata, M., Koda, H., Tajika, M., Shimizu, Y., Nakajima, A., Kubota, K., & Niwa, Y. (2019). Diagnostic ability of artificial intelligence using deep learning analysis of cyst fluid in differentiating malignant from benign pancreatic cystic lesions. Scientific Reports, 9(1), 6893. https://doi.org/10.1038/s41598-019-43314-3
                                                    
                                                    
                                                
                                                    
                                                        Kuwahara, T., Hara, K., Mizuno, N., Haba, S., Okuno, N., Kuraishi, Y., Fumihara, D., Yanaidani, T., Ishikawa, S., Yasuda, T., Yamada, M., Onishi, S., Yamada, K., Tanaka, T., Tajika, M., Niwa, Y., Yamaguchi, R., & Shimizu, Y. (2023). Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses. Endoscopy, 55(2), 140–149. https://doi.org/10.1055/a-1873-7920
                                                    
                                                    
                                                
                                                    
                                                        Kuwahara, T., Hara, K., Mizuno, N., Okuno, N., Matsumoto, S., Obata, M., Kurita, Y., Koda, H., Toriyama, K., Onishi, S., Ishihara, M., Tanaka, T., Tajika, M., & Niwa, Y. (2019). Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical and Translational Gastroenterology, 10(5), 1–8. https://doi.org/10.14309/ctg.0000000000000045
                                                    
                                                    
                                                
                                                    
                                                        Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553). https://doi.org/10.1038/nature14539
                                                    
                                                    
                                                
                                                    
                                                        Lin, R., Sheng, L., Han, C., Guo, X., Wei, R., Ling, X., & Ding, Z. (2023). Application of artificial intelligence to digital‐rapid on‐site cytopathology evaluation during endoscopic ultrasound‐guided fine needle aspiration: A proof‐of‐concept study. Journal of Gastroenterology and Hepatology, 38(6), 883–887. https://doi.org/10.1111/jgh.16073
                                                    
                                                    
                                                
                                                    
                                                        Lou, S., Du, F., Song, W., Xia, Y., Yue, X., Yang, D., Cui, B., Liu, Y., & Han, P. (2023). Artificial intelligence for colorectal neoplasia detection during colonoscopy: a systematic review and meta-analysis of randomized clinical trials. EClinicalMedicine, 66, 102341. https://doi.org/10.1016/j.eclinm.2023.102341
                                                    
                                                    
                                                
                                                    
                                                        Machicado, J. D., Chao, W.-L., Carlyn, D. E., Pan, T.-Y., Poland, S., Alexander, V. L., Maloof, T. G., Dubay, K., Ueltschi, O., Middendorf, D. M., Jajeh, M. O., Vishwanath, A. B., Porter, K., Hart, P. A., Papachristou, G. I., Cruz-Monserrate, Z., Conwell, D. L., & Krishna, S. G. (2021). High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video). Gastrointestinal Endoscopy, 94(1), 78-87.e2. https://doi.org/10.1016/j.gie.2020.12.054
                                                    
                                                    
                                                
                                                    
                                                        Marya, N. B., Powers, P. D., Chari, S. T., Gleeson, F. C., Leggett, C. L., Abu Dayyeh, B. K., Chandrasekhara, V., Iyer, P. G., Majumder, S., Pearson, R. K., Petersen, B. T., Rajan, E., Sawas, T., Storm, A. C., Vege, S. S., Chen, S., Long, Z., Hough, D. M., Mara, K., & Levy, M. J. (2021). Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis. Gut, 70(7), 1335–1344. https://doi.org/10.1136/gutjnl-2020-322821
                                                    
                                                    
                                                
                                                    
                                                        Marya, N. B., Powers, P. D., Petersen, B. T., Law, R., Storm, A., Abusaleh, R. R., Rau, P., Stead, C., Levy, M. J., Martin, J., Vargas, E. J., Abu Dayyeh, B. K., & Chandrasekhara, V. (2023). Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video). Gastrointestinal Endoscopy, 97(2). https://doi.org/10.1016/j.gie.2022.08.021
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Afonso, J., Andrade, P., Cardoso, H., & Macedo, G. (2021). Artificial intelligence and capsule endoscopy: Unravelling the future. Annals of Gastroenterology, 34(3). https://doi.org/10.20524/aog.2021.0606
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Afonso, J., Ribeiro, T., Andrade, P., Cardoso, H., & Macedo, G. (2023). The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. Medicina, 59(4), 790. https://doi.org/10.3390/medicina59040790
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Martins, M., Afonso, J., Ribeiro, T., Cardoso, P., Mendes, F., Andrade, P., Cardoso, H., Ferreira, J., & Macedo, G. (2023). The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights. Cancers, 15(24), 5861. https://doi.org/10.3390/cancers15245861
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Mendes, F., Ribeiro, T., Afonso, J., Cardoso, P., Martins, M., Cardoso, H., Andrade, P., Ferreira, J., Mascarenhas Saraiva, M., & Macedo, G. (2023). Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy. Clinical and Translational Gastroenterology, 14(10), e00609. https://doi.org/10.14309/ctg.0000000000000609
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Ribeiro, T., Afonso, J., Ferreira, J. P. S., Cardoso, H., Andrade, P., Parente, M. P. L., Jorge, R. N., Mascarenhas Saraiva, M., & Macedo, G. (2022). Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network. Endoscopy International Open, 10(2), E171–E177. https://doi.org/10.1055/a-1675-1941
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas, M., Santos, A., & Macedo, G. (2023). “Chapter 12 - Introducing blockchain technology in data storage to foster big data and artificial intelligence applications in healthcare systems.” In Mascarenhas Miguel (Ed.), Artificial Intelligence in Capsule Endoscopy (pp. 199–216). Academic Press.
                                                    
                                                    
                                                
                                                    
                                                        Mascarenhas Saraiva, M. J., Afonso, J., Ribeiro, T., Ferreira, J., Cardoso, H., Andrade, A. P., Parente, M., Natal, R., Mascarenhas Saraiva, M., & Macedo, G. (2021). Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterology, 8(1), e000753. https://doi.org/10.1136/bmjgast-2021-000753
                                                    
                                                    
                                                
                                                    
                                                        Mauro, A., Mazza, S., Scalvini, D., Lusetti, F., Bardone, M., Quaretti, P., Cobianchi, L., & Anderloni, A. (2023). The Role of Cholangioscopy in Biliary Diseases. In Diagnostics (Vol. 13, Issue 18). https://doi.org/10.3390/diagnostics13182933
                                                    
                                                    
                                                
                                                    
                                                        Naito, Y., Tsuneki, M., Fukushima, N., Koga, Y., Higashi, M., Notohara, K., Aishima, S., Ohike, N., Tajiri, T., Yamaguchi, H., Fukumura, Y., Kojima, M., Hirabayashi, K., Hamada, Y., Norose, T., Kai, K., Omori, Y., Sukeda, A., Noguchi, H., … Yano, H. (2021). A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy. Scientific Reports, 11(1), 8454. https://doi.org/10.1038/s41598-021-87748-0
                                                    
                                                    
                                                
                                                    
                                                        Nguon, L. S., Seo, K., Lim, J.-H., Song, T.-J., Cho, S.-H., Park, J.-S., & Park, S. (2021). Deep Learning-Based Differentiation between Mucinous Cystic Neoplasm and Serous Cystic Neoplasm in the Pancreas Using Endoscopic Ultrasonography. Diagnostics, 11(6), 1052. https://doi.org/10.3390/diagnostics11061052
                                                    
                                                    
                                                
                                                    
                                                        Niikura, R., Aoki, T., Shichijo, S., Yamada, A., Kawahara, T., Kato, Y., Hirata, Y., Hayakawa, Y., Suzuki, N., Ochi, M., Hirasawa, T., Tada, T., Kawai, T., & Koike, K. (2020). Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy, 54(8). https://doi.org/10.1055/a-1660-6500
                                                    
                                                    
                                                
                                                    
                                                        Petrone, M. C., & Arcidiacono, P. G. (2016). New strategies for the early detection of pancreatic cancer. In Expert Review of Gastroenterology and Hepatology (Vol. 10, Issue 2). https://doi.org/10.1586/17474124.2016.1122521
                                                    
                                                    
                                                
                                                    
                                                        Piccirelli, S., Mussetto, A., Bellumat, A., Cannizzaro, R., Pennazio, M., Pezzoli, A., Bizzotto, A., Fusetti, N., Valiante, F., Hassan, C., Pecere, S., Koulaouzidis, A., & Spada, C. (2022). New Generation Express View: An Artificial Intelligence Software Effectively Reduces Capsule Endoscopy Reading Times. Diagnostics, 12(8), 1783. https://doi.org/10.3390/diagnostics12081783
                                                    
                                                    
                                                
                                                    
                                                        Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: a multicentre survey. European Radiology, 29(4). https://doi.org/10.1007/s00330-018-5601-1
                                                    
                                                    
                                                
                                                    
                                                        Popovic, D., Glisic, T., Milosavljevic, T., Panic, N., Marjanovic-Haljilji, M., Mijac, D., Stojkovic Lalosevic, M., Nestorov, J., Dragasevic, S., Savic, P., & Filipovic, B. (2023). The Importance of Artificial Intelligence in Upper Gastrointestinal Endoscopy. In Diagnostics (Vol. 13, Issue 18). https://doi.org/10.3390/diagnostics13182862
                                                    
                                                    
                                                
                                                    
                                                        Price, W. N. (2018). Big data and black-box medical algorithms. Science Translational Medicine, 10(471). https://doi.org/10.1126/scitranslmed.aao5333
                                                    
                                                    
                                                
                                                    
                                                        Repici, A., Badalamenti, M., Maselli, R., Correale, L., Radaelli, F., Rondonotti, E., Ferrara, E., Spadaccini, M., Alkandari, A., Fugazza, A., Anderloni, A., Galtieri, P. A., Pellegatta, G., Carrara, S., Di Leo, M., Craviotto, V., Lamonaca, L., Lorenzetti, R., Andrealli, A., … Hassan, C. (2020). Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology, 159(2). https://doi.org/10.1053/j.gastro.2020.04.062
                                                    
                                                    
                                                
                                                    
                                                        Robles-Medranda, C., Baquerizo-Burgos, J., Alcivar-Vasquez, J., Kahaleh, M., Raijman, I., Kunda, R., Puga-Tejada, M., Egas-Izquierdo, M., Arevalo-Mora, M., Mendez, J. C., Tyberg, A., Sarkar, A., Shahid, H., Del Valle-Zavala, R., Rodriguez, J., Merfea, R. C., Barreto-Perez, J., Saldaña-Pazmiño, G., Calle-Loffredo, D., … Lukashok, H. P. (2022). Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: Development and multicenter validation of a convolutional neural network model. Endoscopy, 55(8). https://doi.org/10.1055/a-2034-3803
                                                    
                                                    
                                                
                                                    
                                                        Săftoiu, A., Vilmann, P., Dietrich, C. F., Iglesias-Garcia, J., Hocke, M., Seicean, A., Ignee, A., Hassan, H., Streba, C. T., Ioncică, A. M., Gheonea, D. I., & Ciurea, T. (2015). Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointestinal Endoscopy, 82(1), 59–69. https://doi.org/10.1016/j.gie.2014.11.040
                                                    
                                                    
                                                
                                                    
                                                        Săftoiu, A., Vilmann, P., Gorunescu, F., Gheonea, D. I., Gorunescu, M., Ciurea, T., Popescu, G. L., Iordache, A., Hassan, H., & Iordache, S. (2008). Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointestinal Endoscopy, 68(6), 1086–1094. https://doi.org/10.1016/j.gie.2008.04.031
                                                    
                                                    
                                                
                                                    
                                                        Săftoiu, A., Vilmann, P., Gorunescu, F., Janssen, J., Hocke, M., Larsen, M., Iglesias-Garcia, J., Arcidiacono, P., Will, U., Giovannini, M., Dietrich, C. F., Havre, R., Gheorghe, C., McKay, C., Gheonea, D. I., Ciurea, T., & European EUS Elastography Multicentric Study Group. (2012). Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 10(1), 84-90.e1. https://doi.org/10.1016/j.cgh.2011.09.014
                                                    
                                                    
                                                
                                                    
                                                        Saraiva, M. M., Ribeiro, T., Ferreira, J. P. S., Boas, F. V., Afonso, J., Santos, A. L., Parente, M. P. L., Jorge, R. N., Pereira, P., & Macedo, G. (2022). Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study. Gastrointestinal Endoscopy, 95(2). https://doi.org/10.1016/j.gie.2021.08.027
                                                    
                                                    
                                                
                                                    
                                                        Saraiva, M. M., Ribeiro, T., González-Haba, M., Agudo Castillo, B., Ferreira, J. P. S., Vilas Boas, F., Afonso, J., Mendes, F., Martins, M., Cardoso, P., Pereira, P., & Macedo, G. (2023). Deep Learning for Automatic Diagnosis and Morphologic Characterization of Malignant Biliary Strictures Using Digital Cholangioscopy: A Multicentric Study. Cancers, 15(19). https://doi.org/10.3390/cancers15194827
                                                    
                                                    
                                                
                                                    
                                                        Saraiva, M. M., Spindler, L., Fathallah, N., Beaussier, H., Mamma, C., Quesnée, M., Ribeiro, T., Afonso, J., Carvalho, M., Moura, R., Andrade, P., Cardoso, H., Adam, J., Ferreira, J., Macedo, G., & de Parades, V. (2022). Artificial intelligence and high-resolution anoscopy: automatic identification of anal squamous cell carcinoma precursors using a convolutional neural network. Techniques in Coloproctology, 26(11), 893–900. https://doi.org/10.1007/s10151-022-02684-z
                                                    
                                                    
                                                
                                                    
                                                        Sethi, A., Tyberg, A., Slivka, A., Adler, D. G., Desai, A. P., Sejpal, D. V., Pleskow, D. K., Bertani, H., Gan, S. I., Shah, R., Arnelo, U., Tarnasky, P. R., Banerjee, S., Itoi, T., Moon, J. H., Kim, D. C., Gaidhane, M., Raijman, I., Peterson, B. T., … Kahaleh, M. (2022). Digital Single-operator Cholangioscopy (DSOC) Improves Interobserver Agreement (IOA) and Accuracy for Evaluation of Indeterminate Biliary Strictures: The Monaco Classification. Journal of Clinical Gastroenterology, 56(2). https://doi.org/10.1097/MCG.0000000000001321
                                                    
                                                    
                                                
                                                    
                                                        Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1). https://doi.org/10.3322/caac.21763
                                                    
                                                    
                                                
                                                    
                                                        Simsek, C., & Lee, L. S. (2022). Machine learning in endoscopic ultrasonography and the pancreas: The new frontier? Artificial Intelligence in Gastroenterology, 3(2), 54–65. https://doi.org/10.35712/aig.v3.i2.54
                                                    
                                                    
                                                
                                                    
                                                        Spadaccini, M., Hassan, C., De Marco, A., Mori, Y., Facciorusso, A., Gkolfakis, P., Tziatzios, G., Triantafyllou, K., Antonelli, G., Khalaf, K., Rizkala, T., Bretthauer, M., Vandvik, P. O., Foroutan, F., Fugazza, A., Rondonotti, E., Brown, J. G., Kamba, S., Correale, L., … Repici, A. (2023). REAL-TIME COMPUTER-AIDED DETECTION OF COLORECTAL NEOPLASIA DURING COLONOSCOPY: SYSTEMATIC REVIEW AND META-ANALYSIS. Gastrointestinal Endoscopy, 97(6). https://doi.org/10.1016/j.gie.2023.04.1180
                                                    
                                                    
                                                
                                                    
                                                        Sugimoto, Y., Kurita, Y., Kuwahara, T., Satou, M., Meguro, K., Hosono, K., Kubota, K., Hara, K., & Nakajima, A. (2023). Diagnosing malignant distal bile duct obstruction using artificial intelligence based on clinical biomarkers. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28058-5
                                                    
                                                    
                                                
                                                    
                                                        Suresh, H., & Guttag, J. V. (2019). A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. https://doi.org/10.1145/3465416.3483305
                                                    
                                                    
                                                
                                                    
                                                        Tang, A., Tian, L., Gao, K., Liu, R., Hu, S., Liu, J., Xu, J., Fu, T., Zhang, Z., Wang, W., Zeng, L., Qu, W., Dai, Y., Hou, R., Tang, S., & Wang, X. (2023). Contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) MASTER: A novel deep learning-based system in pancreatic mass diagnosis. Cancer Medicine, 12(7), 7962–7973. https://doi.org/10.1002/cam4.5578
                                                    
                                                    
                                                
                                                    
                                                        Tonozuka, R., Itoi, T., Nagata, N., Kojima, H., Sofuni, A., Tsuchiya, T., Ishii, K., Tanaka, R., Nagakawa, Y., & Mukai, S. (2021). Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. Journal of Hepato-Biliary-Pancreatic Sciences, 28(1), 95–104. https://doi.org/10.1002/jhbp.825
                                                    
                                                    
                                                
                                                    
                                                        Udriștoiu, A. L., Cazacu, I. M., Gruionu, L. G., Gruionu, G., Iacob, A. V., Burtea, D. E., Ungureanu, B. S., Costache, M. I., Constantin, A., Popescu, C. F., Udriștoiu, Ștefan, & Săftoiu, A. (2021). Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model. PLOS ONE, 16(6), e0251701. https://doi.org/10.1371/journal.pone.0251701
                                                    
                                                    
                                                
                                                    
                                                        U.S. Food and Drug Administration (FDA). (2021). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. Center for Devices and Radiological Health’s Digital Health Center of Excellence.
                                                    
                                                    
                                                
                                                    
                                                        Vilas-Boas, F., Ribeiro, T., Afonso, J., Cardoso, H., Lopes, S., Moutinho-Ribeiro, P., Ferreira, J., Mascarenhas-Saraiva, M., & Macedo, G. (2022). Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. Diagnostics (Basel, Switzerland), 12(9). https://doi.org/10.3390/diagnostics12092041
                                                    
                                                    
                                                
                                                    
                                                        Visaggi, P., Barberio, B., Gregori, D., Azzolina, D., Martinato, M., Hassan, C., Sharma, P., Savarino, E., & de Bortoli, N. (2022). Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. In Alimentary Pharmacology and Therapeutics (Vol. 55, Issue 5). https://doi.org/10.1111/apt.16778
                                                    
                                                    
                                                
                                                    
                                                        Wen, L. J., Chen, J. H., Xu, H. J., & Yu, Q. (2020). Efficacy and Safety of Digital Single-Operator Cholangioscopy in the Diagnosis of Indeterminate Biliary Strictures by Targeted Biopsies: A Systematic Review and Meta-Analysis. In Diagnostics (Vol. 10, Issue 9). https://doi.org/10.3390/diagnostics10090666
                                                    
                                                    
                                                
                                                    
                                                        Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18
                                                    
                                                    
                                                
                                                    
                                                        Yao, L., Zhang, J., Liu, J., Zhu, L., Ding, X., Chen, D., Wu, H., Lu, Z., Zhou, W., Zhang, L., Xu, B., Hu, S., Zheng, B., Yang, Y., & Yu, H. (2021). A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound. EBioMedicine, 65, 103238. https://doi.org/10.1016/j.ebiom.2021.103238
                                                    
                                                    
                                                
                                                    
                                                        Yin, H., Yang, X., Sun, L., Pan, P., Peng, L., Li, K., Zhang, D., Cui, F., Xia, C., Huang, H., & Li, Z. (2023). The value of artificial intelligence techniques in predicting pancreatic ductal adenocarcinoma with EUS images: A meta-analysis and systematic review. Endoscopic Ultrasound, 12(1), 50. https://doi.org/10.4103/EUS-D-21-00131
                                                    
                                                    
                                                
                                                    
                                                        Zhang, B., Zhu, F., Li, P., & Zhu, J. (2023). Artificial intelligence-assisted endoscopic ultrasound in the diagnosis of gastrointestinal stromal tumors: a meta-analysis. Surgical Endoscopy, 37(3), 1649–1657. https://doi.org/10.1007/s00464-022-09597-w
                                                    
                                                    
                                                
                                                    
                                                        Zhang, J., Zhu, L., Yao, L., Ding, X., Chen, D., Wu, H., Lu, Z., Zhou, W., Zhang, L., An, P., Xu, B., Tan, W., Hu, S., Cheng, F., & Yu, H. (2020). Deep learning-based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). Gastrointestinal Endoscopy, 92(4), 874-885.e3. https://doi.org/10.1016/j.gie.2020.04.071
                                                    
                                                    
                                                
                                                    
                                                        Zhang, X., Tang, D., Zhou, J. D., Ni, M., Yan, P., Zhang, Z., Yu, T., Zhan, Q., Shen, Y., Zhou, L., Zheng, R., Zou, X., Zhang, B., Li, W. J., & Wang, L. (2023). A real-time interpretable artificial intelligence model for the cholangioscopic diagnosis of malignant biliary stricture (with videos). Gastrointestinal Endoscopy, 98(2). https://doi.org/10.1016/j.gie.2023.02.026
                                                    
                                                    
                                                
                                                    
                                                        Zhu, M., Xu, C., Yu, J., Wu, Y., Li, C., Zhang, M., Jin, Z., & Li, Z. (2013). Differentiation of Pancreatic Cancer and Chronic Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images: A Diagnostic Test. PLoS ONE, 8(5), e63820. https://doi.org/10.1371/journal.pone.0063820