Year 2018 / Volume 110 / Number 7
Original
Metformin modifies glutamine metabolism in an in vitro and in vivo model of hepatic encephalopathy

427-433

DOI: 10.17235/reed.2018.5004/2017

Antonio Gil-GÓmez, Ana Isabel Gómez-Sotelo, Isidora Ranchal, Ángela Rojas, Marta García-Valdecasas, Rocío Muñoz-Hernández, Rocío Gallego-Durán, Javier Ampuero, Manuel Romero Gómez,

Abstract
Aim: to analyze the effect of metformin on ammonia production derived from glutamine metabolism in vitro and in vivo. Methods: twenty male Wistar rats were studied for 28 days after a porto-caval anastomosis (n = 16) or a sham operation (n = 4). Porto-caval shunted animals were randomized into two groups (n = 8) and either received 30 mg/kg/day of metformin for two weeks or were control animals. Plasma ammonia concentration, Gls gene expression and K-type glutaminase activity were measured in the small intestine, muscle and kidney. Furthermore, Caco2 were grown in different culture media containing glucose/glutamine as the main carbon source and exposed to different concentrations of the drug. The expression of genes implicated in glutamine metabolism were analyzed. Results: metformin was associated with a significant inhibition of glutaminase activity levels in the small intestine of porto-caval shunted rats (0.277 ± 0.07 IU/mg vs 0.142 ± 0.04 IU/mg) and a significant decrease in plasma ammonia (204.3 ± 24.4 µg/dl vs 129.6 ± 16.1 µg/dl). Glucose withdrawal induced the expression of the glutamine transporter SLC1A5 (2.54 ± 0.33 fold change; p < 0.05). Metformin use reduced MYC levels in Caco2 and consequently, SLC1A5 and GLS expression, with a greater effect in cells dependent on glutaminolytic metabolism. Conclusion: metformin regulates ammonia homeostasis by modulating glutamine metabolism in the enterocyte, exerting an indirect control of both the uptake and degradation of glutamine. This entails a reduction in the production of metabolites and energy through this pathway and indirectly causes a decrease in ammonia production that could be related to a decreased risk of HE development.
Share Button
New comment
Comments

03/05/2020 8:09:04
THANKS


References
[1] Patel D, McPhail MJW, Cobbold JFL, et al. Hepatic encephalopathy. Br J Hosp Med (Lond) 2012;73:79–85.
[2] Ferenci P, Lockwood A, Mullen K, et al. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002;35:716–21. doi:10.1053/jhep.2002.31250.
[3] Olde Damink SWM, Deutz NEP, Dejong CHC, et al. Interorgan ammonia metabolism in liver failure. Neurochem Int 2002;41:177–88. doi:10.1016/S0197-0186(02)00040-2.
[4] Jover-Cobos M, Davies N, Jalan R et al. (2012). The Rise of Glutaminase in End-Stage Liver Diseases, Liver Transplantation - Basic Issues, Prof. Hesham Abdeldayem (Ed.), InTech,. Available from: https://www.intechopen.com/books/liver-transplantation-basic-issues/the-rise-of-glutaminase-in-end-stage-liver-diseases doi: 10.5772/29210
[5] Romero-Gómez M, Jover M, Galán JJ, et al. Gut ammonia production and its modulation. Metab Brain Dis 2009;24:147–57. doi:10.1007/s11011-008-9124-3.
[6] Romero-Gómez M, Ramos-Guerrero R, Grande L, et al. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 2004;41:49–54. doi:10.1016/j.jhep.2004.03.021.
[7] Scalise M, Pochini L, Panni S, et al. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids 2014;46:2463–75. doi:10.1007/s00726-014-1808-x.
[8] Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 2008;105:18782–7. doi:10.1073/pnas.0810199105.
[9] Rajendram R, Preedy VR, Patel VB. Glutamine in clinical nutrition. Glutamine Clin Nutr 2015:1–551. doi:10.1007/978-1-4939-1932-1.
[10] Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010;330:1340–4. doi:10.1126/science.1193494.
[11] Fendt S-M, Bell EL, Keibler MA, et al. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Commun 2013;4:2236. doi:10.1038/ncomms3236.
[12] Garcia-Compean D, Jaquez-Quintana JO, Gonzalez-Gonzalez JA, et al. Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and management. World J Gastroenterol 2009;15:280–8.
[13] Ampuero J, Ranchal I, del Mar Díaz-Herrero M, et al. Role of diabetes mellitus on hepatic encephalopathy. Metab Brain Dis 2013;28:277–9. doi:10.1007/s11011-012-9354-2.
[14] Butt Z, Jadoon NA, Salaria ON, et al. Diabetes mellitus and decompensated cirrhosis: risk of hepatic encephalopathy in different age groups. J Diabetes 2013;5:449–55. doi:10.1111/1753-0407.12067.
[15] Sigal SH, Stanca CM, Kontorinis N, et al. Diabetes mellitus is associated with hepatic encephalopathy in patients with HCV cirrhosis. Am J Gastroenterol 2006;101:1490–6. doi:10.1111/j.1572-0241.2006.00649.x.
[16] Odeh M, Sabo E, Srugo I, et al. Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver failure. Liver Int 2004;24:110–6. doi:10.1111/j.1478-3231.2004.0894.x.
[17] Goral V, Atayan Y, Kaplan A. The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor alpha? Hepatogastroenterology 2011;58:943–8.
[18] Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014;510:542–6. doi:10.1038/nature13270.
[19] Ampuero J, Ranchal I, Nuñez D, et al. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy. PLoS One 2012;7:e49279. doi:10.1371/journal.pone.0049279.
[20] Numata M. A modified technique to make a portacaval shunt in rats. Microsurgery 1983;4:243–4.
[21] Javeshghani S, Zakikhani M, Austin S, et al. Carbon source and Myc expression influence the antiproliferative actions of metformin. Cancer Res 2012;72:6257–67. doi:10.1158/0008-5472.CAN-12-2907.
[22] Chomzynski P, Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate–Phenol–Chloroform Extraction. Anal Biochem 1987;162:156–9. doi:10.1006/abio.1987.9999.
[23] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.
[24] Heini HG, Gebhardt R, Brecht A, et al. Purification and characterization of rat liver glutaminase. Eur J Biochem 1987;162:541–6.
[25] Butterworth RF, Norenberg MD, Felipo V, et al. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 2009;29:783–8. doi:10.1111/j.1478-3231.2009.02034.x.
[26] James LA, Lunn PG, Middleton S, et al. Glutamine oxidation and utilization by rat and human oesophagus and duodenum. Br J Nutr 1999;81:323–9. doi:10.1017/S0007114599000574
[27] McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia 2016;59:426–35. doi:10.1007/s00125-015-3844-9.
[28] Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 1995;15:133–59. doi:10.1146/annurev.nu.15.070195.001025.
[29] Jover-Cobos M, Noiret L, Lee K, et al. Ornithine phenylacetate targets alterations in the expression and activity of glutamine synthase and glutaminase to reduce ammonia levels in bile duct ligated rats. J Hepatol 2014;60:545–53. doi:10.1016/j.jhep.2013.10.012.
[30] Pinkus LM. Glutamine binding sites. Methods Enzymol 1977;46:414–27. doi:10.1016/S0076-6879(77)46049-X.
[31] Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today 2014;19:450–7. doi:10.1016/j.drudis.2013.10.008.
[32] Díaz-Herrero MM, del Campo JA, Carbonero-Aguilar P, et al. THDP17 decreases ammonia production through glutaminase inhibition. A new drug for hepatic encephalopathy therapy. PLoS One 2014;9:e109787. doi:10.1371/journal.pone.0109787.
[33] Gao P, Tchernyshyov I, Chang T-C, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009;458:762–5. doi:10.1038/nature07823.
[34] Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012;23:362–9. doi:10.1016/j.semcdb.2012.02.002.
[35] Zhao Y, Liu H, Riker AI, et al. Emerging metabolic targets in cancer therapy. Front Biosci 2011;16:1844–60. doi:10.2741/3826.
[36] Csibi A, Lee G, Yoon S-O, et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 2014;24:2274–80. doi:10.1016/j.cub.2014.08.007.
[37] Fuchs BC, Finger RE, Onan MC, et al. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am J Physiol Cell Physiol 2007;293:C55-63. doi:10.1152/ajpcell.00330.2006.
[38] Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009;136:521–34. doi:10.1016/j.cell.2008.11.044.
[39] Wang SS, Hsiao R, Limpar MM, et al. Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin. Int J Mol Med 2014;33:35–42. doi:10.3892/ijmm.2013.1545.
[40] Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002;277:23977–80. doi:10.1074/jbc.C200171200.
[41] Akinyeke T, Matsumura S, Wang X, et al. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013;34:2823–32. doi:10.1093/carcin/bgt307.
[42] Pulito C, Donzelli S, Muti P, et al. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Ann Transl Med 2014;2:58. doi:10.3978/j.issn.2305-5839.2014.06.03.
[43] Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis 2014;29:901–11. doi:10.1007/s11011-014-9494-7.
Related articles

Editorial

Treatment of portal vein thrombosis in cirrhosis patients

DOI: 10.17235/reed.2023.9800/2023

Editorial

AKI-HRS, more than a name change for type-1 hepatorenal syndrome

DOI: 10.17235/reed.2023.9677/2023

Editorial

New actors come into play against hepatitis delta

DOI: 10.17235/reed.2022.9050/2022

Letter

Hemoperitoneum due to rupture of intra-abdominal varices

DOI: 10.17235/reed.2022.8937/2022

Letter

Cirrhotic pattern in advanced hepatic sarcoidosis

DOI: 10.17235/reed.2021.8446/2021

Digestive Diseases Image

Giant cystic hepatocarcinoma in the absence of cirrhosis

DOI: 10.17235/reed.2021.8313/2021

Letter

Capecitabine-induced hyperammonemic encephalopathy

DOI: 10.17235/reed.2021.8129/2021

Digestive Diseases Image

Percutaneous treatment of a splenorenal shunt with an atrial septal closure device

DOI: 10.17235/reed.2020.7701/2020

Review

Physical frailty in liver transplantation

DOI: 10.17235/reed.2020.7448/2020

Review

Risk stratification and treatment of primary biliary cholangitis

DOI: 10.17235/reed.2018.5662/2018

Citation tools
Gil-GÓmez A, Gómez-Sotelo A, Ranchal I, Rojas Á, García-Valdecasas M, Muñoz-Hernández R, et all. Metformin modifies glutamine metabolism in an in vitro and in vivo model of hepatic encephalopathy. 5004/2017


Download to a citation manager

Download the citation for this article by clicking on one of the following citation managers:

Metrics
This article has received 2118 visits.
This article has been downloaded 193 times.

Statistics from Dimensions


Statistics from Plum Analytics

Publication history

Received: 11/04/2017

Accepted: 01/02/2018

Online First: 15/03/2018

Published: 02/07/2018

Article revision time: 289 days

Article Online First time: 338 days

Article editing time: 447 days


Share
This article has been rated by 1 readers.
Reader rating:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
The Spanish Journal of Gastroenterology is the official organ of the Sociedad Española de Patología Digestiva, the Sociedad Española de Endoscopia Digestiva and the Asociación Española de Ecografía Digestiva
Cookie policy Privacy Policy Legal Notice © Copyright 2023 y Creative Commons. The Spanish Journal of Gastroenterology